A (Broad-band) Soft X-ray Polarimeter

Herman L. Marshall

Moritz Guenther, Ralf K. Heilmann, Norbert S. Schulz, Sarah N. T. Heine, Mark D. Egan, Mark Schattenburg, Deepto Chakrabarty, Adam Trebach (MIT), David L. Windt (Reflective X-ray Optics), Eric M. Gullikson (LBL), Brian Ramsey, Martin C. Weisskopf (MSFC), Gianpiero Tagliaferri, Giovanni Pareschi (INAF/OAB), Vadim Burwitz (MPE), Alan Marscher, Svetlana Jorstad (BU)
A Science Goal: Neutron Star Atmospheres

- Isolated neutron stars are often soft, emit below 1 keV
- Atmospheres show features now found in spectra of isolated N-stars
- Features will be polarized more than continuum
- Atmosphere models are used to determine R^2, g to give $M, R \rightarrow$ Nuclear Equation of State

\[H_{\text{E}} \text{ (erg cm}^{-2}\text{ s}^{-1}\text{ keV}^{-1}) \]

\[T_{\text{eff}} = 1.2 \times 10^6 \text{ K} \]
\[B = 4 \times 10^{13} \text{ G} \]
\[\Sigma = 10 \text{ g cm}^{-2} \]

\[T_{\text{eff}} = 1.2 \times 10^6 \text{ K} \]
\[B = 10^{14} \text{ G} \]
\[\Sigma = 10 \text{ g cm}^{-2} \]

Suleimanov+ 2011
Broad-band Soft X-ray Polarimetry

• Start with general use broad-band focusing mirror
• Use gratings to disperse X-rays: Critical Angle Transmission (CAT) gratings
• Add Bragg reflector: multilayer coated, flat mirror
 • Period is laterally graded (LGML) along mirror to match dispersion
 • Set at 45±5° angle for >90% modulation of linearly polarized X-rays
• Useful bandpass: 0.15-0.7 keV
• Components verified at MIT Polarimetry Beamline or ALS (Berkeley)
• Designed a sounding rocket instrument
 • Rocket Experiment Demonstration of a Soft X-ray Polarimeter (REDSoX Polarimeter)
 • Received funding for raytracing and mechanical engineering
 • Submitting to NASA for launch in 2022, concurrent with IXPE
Multilayer Polarimeter
Schematic Layout

0th Order

Polarizing ML mirror

CCD
Current Reflectivities of LGMLs

LGMLs – Measured Reflectance at 45 degrees incidence

 Reflectance, R

Wavelength, λ [Å]

La/B,C (RXO #A14080)
C/Co$_{75}$Cr$_{25}$N$_2$ (RXO #A13164)
Cr/Sc (CXRO #CX170419A1)

H. L. Marshall — REDSoX Polarimeter

Alsatian Polarimetry 2017
CAT Gratings

- MIT/SNL CAT gratings are now available
- Gratings etched from Si wafers
- 5 gratings are in lab, others tested at MSFC
- Efficiencies are as expected, up to 25%
- See papers by Heilmann et al.
CAT Gratings

• MIT/SNL CAT gratings are now available

• Gratings etched from Si wafers

• 5 gratings are in lab, others tested at MSFC

• Efficiencies are as expected, up to 25%

• See papers by Heilmann et al.
CAT Gratings

- MIT/SNL CAT gratings are now available
- Gratings etched from Si wafers
- 5 gratings are in lab, others tested at MSFC
- Efficiencies are as expected, up to 25%
- See papers by Heilmann et al.
Sounding Rocket Experiment (Proposed)

- Wolter-I optics (MSFC, ML)
 - 9 shells, 640 cm2
 - 15-25” HPD
 - $F = 2.5$ m, 44 cm diam.
- CAT gratings (MIT)
- 4 CCDs (XCAM)
- 3 LGMLs (RXO)
- Launches in 2022
- Achieve $MDP = 11\%$ for Mk 421 in 300 s exposure
Suborbital Mission:
Entrance Aperture & Focal Plane
Sounding Rocket Predictions

- 300 s exposure (h > 110 km)
- Achieved ML reflectivities
- Measured CAT grating efficiencies
- Simulated Mk 421 observation:
 - easily detect 20% polarization
 - MDP is 11%
- MDP for Isolated NSs: 59-75%
- Her X-1: MDP = 20%

Simulation of Mk 421, 20% polarized perp. to CCD 1
The X-ray Polarimetry Probe

- 0.15-0.7 keV: like REDSoX
- 2-8 keV: like IXPE
- 3-50 keV: like X-Calibur
Prediction for a Probe

• Same focal plane
• Added improved LGML
• Added mirror shells
• 200 ks exposure on 3C 273

• MDP = 2% in 10Å bands
 (30-70 Å, 0.18 to 0.4)
• Total rate: 2.3 cps
Summary

- Soft X-ray (0.15 - 0.7 keV) polarimetry is feasible
 - Suborbital flight proposal: REDSoX Polarimeter (1st launch: 2022)
 - Preliminary design validates approach & achievable tolerances
 - Targets include blazar jets and isolated neutron stars
- For a Polarimetry Probe: add an instrument of the REDSoX design
 - Praxys detector for 2-8 keV band, Excalibur detector for 10-50 keV
 - REDSoX Polarimeter adds 0.15-0.7 band, common optics
 - Add GPD for X-ray imaging
- Improved X-ray polarimetry science in an X-ray Polarimetry Probe
 - Blazar jets, quasar cores: polarization over x50 in E
 - Nstars below 1 keV: QED (RX J0720-31)
 - Pulsars (Her X-1, PSR 0656+14)
 - AGN disk orientation & GR effects
 - XRB jets from low N_H BH transients (XTE J1118+480)
Polarimetry Raytrace

- Software components from MARXS in python
- Can compute effective area & modulation factor, verify design
- Examine tolerances for mirror HPD, aspect jitter, misalignments